Positron emission tomography imaging of CD105 expression in a rat myocardial infarction model with (64)Cu-NOTA-TRC105.
نویسندگان
چکیده
Biological changes following myocardial infarction (MI) lead to increased secretion of angiogenic factors that subsequently stimulate the formation of new blood vessels as a compensatory mechanism to reverse ischemia. The goal of this study was to assess the role of CD105 expression during MI-induced angiogenesis by positron emission tomography (PET) imaging using (64)Cu-labeled TRC105, an anti-CD105 monoclonal antibody. MI was induced by ligation of the left anterior descending (LAD) artery in female rats. Echocardiography and (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET scans were performed on post-operative day 3 to confirm the presence of MI in the infarct group and intact heart in the sham group, respectively. Ischemia-induced angiogenesis was non-invasively monitored with (64)Cu-NOTA-TRC105 (an extensively validated PET tracer in our previous studies) PET on post-operative days 3, 10, and 17. Tracer uptake in the infarct zone was highest on day 3 following MI, which was significantly higher than that in the sham group (1.41 ± 0.45 %ID/g vs 0.57 ± 0.07 %ID/g; n=3, p<0.05). Subsequently, tracer uptake in the infarct zone decreased over time to the background level on day 17, whereas tracer uptake in the heart of sham rats remained low at all time points examined. Histopathology documented increased CD105 expression following MI, which corroborated in vivo findings. This study indicated that PET imaging of CD105 can be a useful tool for MI-related research, which can potentially improve MI patient management in the future upon clinical translation of the optimized PET tracers.
منابع مشابه
Positron Emission Tomography Imaging of CD105 Expression with a 64Cu-Labeled Monoclonal Antibody: NOTA Is Superior to DOTA
Optimizing the in vivo stability of positron emission tomography (PET) tracers is of critical importance to cancer diagnosis. In the case of (64)Cu-labeled monoclonal antibodies (mAb), in vivo behavior and biodistribution is critically dependent on the performance of the bifunctional chelator used to conjugate the mAb to the radiolabel. This study compared the in vivo characteristics of (64)Cu-...
متن کاملPET Imaging of Abdominal Aortic Aneurysm with 64Cu-Labeled Anti-CD105 Antibody Fab Fragment.
UNLABELLED The critical challenge in abdominal aortic aneurysm (AAA) research is the accurate diagnosis and assessment of AAA progression. Angiogenesis is a pathologic hallmark of AAA, and CD105 is highly expressed on newly formed vessels. Our goal was to use (64)Cu-labeled anti-CD105 antibody Fab fragment for noninvasive assessment of angiogenesis in the aortic wall in a murine model of AAA. ...
متن کاملTheranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging
Brush-shaped amphiphilic block copolymers were conjugated with a monoclonal antibody against CD105 (i.e., TRC105) and a macrocyclic chelator for (64)Cu-labeling to generate multifunctional theranostic unimolecular micelles. The backbone of the brush-shaped amphiphilic block copolymer was poly(2-hydroxyethyl methacrylate) (PHEMA) and the side chains were poly(L-lactide)-poly(ethylene glycol) (PL...
متن کامل64Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques.
UNLABELLED The rupture of vulnerable atherosclerotic plaques that lead to stroke and myocardial infarction may be induced by macrophage infiltration and augmented by the expression of integrin αvβ3. Indeed, atherosclerotic angiogenesis may be a promising marker of inflammation. In this study, an engineered integrin αvβ3-targeting PET probe, (64)Cu-NOTA-3-4A, derived from a divalent knottin mini...
متن کاملPositron Emission Tomography and Near-Infrared Fluorescence Imaging of Vascular Endothelial Growth Factor with Dual-Labeled Bevacizumab.
The pivotal role of vascular endothelial growth factor (VEGF) in cancer is underscored by the approval of bevacizumab (Bev, a humanized anti-VEGF monoclonal antibody) for first line treatment of cancer patients. The aim of this study was to develop a dual-labeled Bev for both positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of VEGF. Bev was conjugated to a NIRF d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of nuclear medicine and molecular imaging
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2013